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Abstract - Dismounted targets can be tracked in ur-
ban environments with video sensors. Real-time sys-
tems are unable to process all of the imagery, demand-
ing some method for prioritization of the processing
resources. Furthermore, various segmentation algo-
rithms exist within image processing, each algorithm
possesses unique capabilities, and each algorithm has
an associated computational cost. Additional complex-
ity arises in the prioritization problem when targets be-
come occluded (i.e., a building) and when the targets
are intermixed with other dismounted entities. This
added complexity leads to the question "which por-
tions of the scene warrant both low cost and high cost
processing?" The approach presented in this paper is
to apply multi-target tracking techniques in conjunc-
tion with an integer programming optimization routine
to determine optimal allocation of the video processing
resources. This architecture results in feedback from
the tracking routine to the image processing function
which in turn enhances the ability of the tracker.
Keywords: Tracking, resource allocation, image process-
ing, urban dismount, integer programming.

1 Introduction

The operational impetus for the research presented
here is the need to track dismounted targets in urban
environments. Recent efforts by the Automatic Tar-
get Recognition (ATR) Division of the Air Force Re-
search Laboratory Sensor’s Directorate have led to the
focus on video based sensing in order to accomplish
urban dismount tracking. Two issues that naturally
arise in these types of scenarios are multiple targets

and regions of measurement occlusion (i.e., targets be-
hind buildings). This paper addresses these specific
issues by combining multi-target tracking with an im-
age processing resource allocation algorithm. Details
of the methods used are presented along with prelim-
inary results demonstrated via computer simulation.
To accomplish effective multiple-target tracking, com-
putational complexity is affected by the complexity of
the tracker. More complex systems may be more ro-
bust, but demand more resources from the computer.
When using video-based tracking, an additional com-
putational complexity arises from the measurement
generation process commonly known as image process-
ing. Real-time systems may be unable to process all
of the imagery provided by the sensor. Furthermore,
one has to decide which segmentation method to use
on the image as each method possesses unique capabil-
ities and each method has an associated computational
cost. The focus of this research is the development of
an optimization methodology to determine the alloca-
tion of the video processing resources. A key aspect of
the architecture presented is the information exchange
between the tracking function and the resource alloca-
tion function. Each function enhances the capability
of the other, and a feedback loop can be formed for
this application.
It is important to note that the tracking func-

tion consists of both kinematic and attribute tracking.
Given the sensor mode, namely imagery generated by
video, and the target type, namely a dismounted tar-
get, attributes will play a major role in the ability to
maintain kinematic track and to provide target ID. At-
tribute measurement data may be provided by image
segmentation methods such as color mapping (hue and
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saturation), texture mapping, and change detection.
These three methods will be exploited in this paper,
but the overall architecture presented is easily extend-
able to other methods. The attributes provided by
color and texture mapping are obvious, and the spe-
cific method used in the simulation will be discussed
in Section 3. Change detection can provide both kine-
matic and attribute data. The mass of a detection is
considered an attribute, and the center of this mass
provides kinematic position data. Further detail of the
tracking algorithm will be presented in Section 4.
With this basic understanding of the measurement

information used by the tracking algorithm, it is easy
to recognize the interaction of the two primary func-
tions. Specifically, the kinematic data is used by the
resource allocation function to determine regions that
should receive a higher allocation of the image process-
ing resources. In addition, the ability of the resource
allocation routine to provide the optimal set of at-
tribute measurements to the tracking algorithm will
ensure enhanced tracking.
The next sections provide details of the resource al-

location method followed by a specific implementation
of a relatively simple tracking algorithm and the ver-
sion of the image segmentation methods used in the
simulation study.

2 Optimal Resource Allocation

The fundamental questions being answered by the re-
source allocation algorithm are "which regions of the
image should have priority for image processing?" and
"which of the various segmentation algorithms should
be applied in these regions?" A straightforward method
is used by dividing the image into sub-regions at var-
ious levels of resolution. This results in a grid as il-
lustrated in Figure 1 for a 21 sub-region case. In this
example, the first 16 sub-regions represent the high res-
olution regions, 17-20 are medium resolution, and 21
has the lowest resolution. Various image segmentation
algorithms may be employed in each sub-region. As
such, the number of options available to the resource
allocation process are the number of sub-regions mul-
tiplied by the number of segmentation methods. A
key factor in choosing which options to execute is the
benefit associated with each option. There are varia-
tions in the costs associated with processing high ver-
sus low resolution regions, and variations in the costs
of each type of segmentation algorithm. Given these
viewpoints, it is clear that a cost/benefit based opti-
mization can be performed.
The value associated with each sub-region may de-

pend on many factors. The primary factors in this
study come from the kinematic states of the tracking
routine, the relative value of the segmentation meth-
ods, and the target ID associated with a given track.
The distance of a sub-region relative to a given track’s
position will be considered for the assignment of values
to each sub-region. The full computation that deter-
mines the value of a given sub-region will be described
in Section 4.4. The focus of this paper will be to estab-
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Figure 1: Sub-region Grid

lish the minimal valuation criteria to obtain a meaning-
ful selection within the optimization routine. Noting
that the values assigned to a sub-region will be based
on the kinematic data gathered from previous measure-
ments, it is clear that the information gained from a
tracking algorithm will be used to drive the optimiza-
tion routine. It is also evident that the competence of
the algorithm that derives the values for sub-regions is
also of critical importance to the system.

Given the nature of the binary decisions being made
an obvious choice is the use of binary integer program-
ming to search this solution space. Linear integer pro-
grams can be solved by a number of conventional so-
lution techniques so the formulation of the linear pro-
gram is the critical issue [2]. As with the gridding and
valuation considerations, the integer program must en-
sure that it enhances the capability of the system while
reducing the overall computational load.

The primary constraint on the system is a limitation
on how much time it should take to complete the entire
process. With knowledge of the relative time require-
ments to complete the available segmentation tasks,
the integer program can be devised to solve the prob-
lem. Other system limitations can be implemented,
which may vary depending on the segmentation algo-
rithms available. Constraints are described as arith-
metic equations that can define lines or planes in a
space. Each of the sub-regions in conjunction with the
set of segmentation algorithms are considered a binary
decision variable. Selecting a decision variable will add
a value to the solution while incurring a cost. The opti-
mal solution will be obtained when the maximum value
has been obtained while consuming all of the available
time to perform the chosen segmentation algorithms.

We formally define the binary integer program as
follows:

maximize fi,jdi,j
such that Adi,j ≤ b
and Aeqdi,j = beq

(1)



where

di,j = binary decision variable for sub-region i

and segmentation method j

fi,j = value function at i, j

A,Aeq = constraint matrices for limits on di,j

b, beq = limit vector for the constraints

Note that di,j is a vector of length equal to the number
of image sub-regions across all resolution levels (nsub)
multiplied by the number of segmentation methods
(nseg) considered. A detailed description of the com-
putation of the value function, fi,j , is deferred until
Section 4.4 due to its dependence on information pre-
sented later in the paper. The inequality constraints
provide upper bounds on the number of decision vari-
ables with a value of 1 and thus limit the number of
times that a sub-region and segmentation method can
be selected. The structure of the A-matrix is such that
the first row in conjunction with the first element of
the limit vector, b, will provide a limit on the number
of times segmentation method #1 can be performed.
A similar row is added for each segmentation method.
Next, a row is added for each sub-region in conjunc-
tion with another element of the vector b to provide a
limit on the number of times each sub-region can be
operated on at each sample time. The dimensions of
the A-matrix will be (nsub + nseg) x (nsub ∗ nseg).
The second set of constraints is used to ensure that

the optimization ensures all of the processing time
available at each epoch will be used. This is accom-
plished by setting beq equal to the maximum allowable
cost which represents the total processing time avail-
able. The elements of Aeq are based on the time re-
quired to perform each of the possible segmentation
tasks. The form of Aeq is given by:£

c1 nsub... c1 c2 nsub... c2 cnseg
nsub... cnseg

¤
where cs = the cost to perform segmentation method
s. The dimensions of the Aeq-matrix will be 1 x
(nsub ∗ nseg) .
The binary integer program is itself a computation-

ally intensive mechanism. To ensure that this method
does not merely trade one numerically intensive mech-
anism for another, there are means that can be em-
ployed to reduce the overall size of the integer program.
A form of gating in which sub-regions may be chosen
based on their likelihood of providing information may
be used. These sub-regions would be the only ones
available for consideration within the integer program.
This method would require increased confidence in the
tracker and assumes that new targets are not entering
the image space. This may be accomplished by apply-
ing wide area change detection at low resolution, then
executing the integer program given the resources that
remain.

3 Image Processing
Various segmentation methods can be applied to 2-D
imagery for the purpose of extracting measurements

that are processed by a tracking algorithm. Although
this study focuses on three such methods, it is im-
portant to note the resource allocation function and
the overall tracking architecture can readily accept any
number of segmentation methods. The three methods
mentioned previously are change detection, color map-
ping, and texture mapping.
Change detection is computationally inexpensive

and is a pixel by pixel binary indication that a change
has occurred in the image. The fundamental con-
cept is to compare frames of imagery and detect vari-
ations from one frame to the next. Simply declaring a
change based on two frames of data is susceptible to
noise and stationary objects with second order move-
ments. Multi-frame smoothing may be applied to filter
out these movements, and focus on moving objects of
greater interest to the tracker. Given that the change
detection of a group of contiguous pixels defines a mov-
ing object, there are two main measurements that can
be utilized. First, the mass of the object is defined by
the number of pixels in the group and thus provides
an attribute type measurement. Second, the center of
mass of the pixels defines the kinematic location of the
object. Both of these measurements will be provided
to the tracking algorithm as described in the next sec-
tion.
Color mapping uses a combination of hue and satu-

ration levels for an object within a sub-region. A finite
discrete number of bins, nbins, is established to rep-
resent the possible variations of color. For this study,
nbins = 30, resulting in a set of 30 distinguishable hue
levels, and 30 more bins are used to distinguish satura-
tion levels. Each group of bins represents an attribute
measurement. The computation of hue and saturation
values are done pixel-by-pixel using the transformation
[3]:

hue = cos−1

(
1

2

[(R−G) + (R−B)]p
(R−G)2 + (R−B)(G−B)

)
(2)

sat = 1− 3min(R,G,B)
(R+G+B)

(3)

where R,G,and B represent the values of red, green,
and blue present in each pixel. This will provide a value
from 0 to 1 for each pixel for both hue and saturation.
The value space is discretized into 30 evenly-spaced
bins for this experiment. The same binning process is
used for saturation data.
The intensity component of an image has the char-

acteristic of being useful for describing an image’s tex-
ture. Intensity is defined as:

I =
1

3
(R+G+B) (4)

The spatial characteristics of texture can be calculated
using the Fourier transform. This provides the abil-
ity to distinguish between periodic and non-periodic
patterns and to quantify differences between periodic
patterns. Spectral measurements are a result of the
2-dimensional Fast Fourier Transform (FFT) of the



image. This FFT produces a function of the image,
S(r, θ), in polar coordinates. Two 1-dimensional sum-
mations of this function provide two additional at-
tributes through:

S(r) =
πX

θ=0

Sθ(r) (5)

S(θ) =

R0X
r=1

Sr(θ) (6)

where R0 is the radius of a circle centered at the origin.

4 Target Tracking
As previously mentioned, the method employed to
track targets is a combination of kinematic and at-
tribute tracking. Kinematic tracking here assumes a
2-D space within which the targets may move. An oc-
clusion is defined as a subset of the target space where
measurements are not available, but where the target
may move freely. States used to represent the kine-
matic and attribute data can be decoupled based on
the following discussion. Attributes including color,
texture, and mass do not effect the target dynamics
model. In many cases, attributes lead to target ID,
which may be correlated to target dynamics. However,
our only targets of interest are urban dismounts, so the
target dynamics are assumed identical. Similarly, tar-
get position and velocity will not directly effect target
color, texture, or mass. This decoupling provides con-
siderable simplification for the target tracker.

4.1 Kinematic Tracking

Consider the kinematic states of position and velocity
xkin(k) = [px vx py vy]

T , the constant velocity model
is given by according to the following constant velocity
dynamics model [4]:

xkin(k) = Φ(k, k − 1)xkin(k − 1) + (7)

+Gd(k − 1)wd(k − 1)

=

⎡⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎦xkin(k − 1) + (8)

+

⎡⎢⎢⎣
T 2

2 0
T 0

0 T 2

2
0 T

⎤⎥⎥⎦wd(k − 1)

where T is the time between measurement points (k−
1) and k. The measurements consist of a two-element
vector related to the state vector by the expression:

z
kin
(k) = Hx

kin
(k) + v(k) (9)

=

∙
1 0 0 0
0 0 1 0

¸
x
kin
(k) + v(k)

where T is the time between measurement intervals
(k−1) and (k), andw(k) and v(k) are two independent

zero-mean white noise processes such that:

E{w(t)w(t+ τ)T } = Q δ(τ)

E{v(ti)v(tj)T } = R δij

Given this simple target model, linear Kalman filter-
ing will be used for the kinematic tracker. The classi-
cal method of state propagation between measurement
updates is conducted, while measurement updates may
not occur at every sample time due to occluded targets.
As such, during periods of prolonged occlusion, the
target track errors will grow. The reappearance of the
target on a boundary of the occlusion would provide a
measurement update for the existing track. However,
there is no guarantee that the target will reappear by
the time the propagated track reaches a boundary of
the occlusion. This leads the to need to manage track
initiation and deletion. Candidate tracks are initiated
via change detections at locations equal to the center
of mass of the detection. A goal of the tracking routine
is to maintain track of any high-valued targets. More
than one track may exist since we cannot assume that
the first detected change represents a high-valued tar-
get. This essentially represents multiple hypotheses in
the context of many candidate tracks competing for the
role as the high-valued target. Note again that the re-
source allocation concept is not dependent on the idea
of a high-valued target, and it could still provide opti-
mal processing decisions for multiple high-valued tar-
gets. Standard tracking concepts such as track gating
and M/N initiation may help to filter out unrealistic
new tracks. Track deletion techniques such as track
scoring may be used to remove tracks of targets that
are believed to have left the scene.

4.2 Attribute Tracking

The attribute state vector represents a concatenation
of four types of attribute data as follows:

xatt =

⎡⎢⎢⎢⎢⎣
hue1−nbins
sat1−nbins

S(r)
S(θ)
mass

⎤⎥⎥⎥⎥⎦ (10)

where hue1−nbins and sat1−nbins are vectors of dimen-
sion nbins x 1 representing the 30 bins of hue and satu-
ration data respectively. The remaining attributes are
scalars as defined in Section 3. Inadequate knowledge
of the statistical nature of the target state and the
measurements leads to a desire to use a sub-optimal
approach to perform attribute updates. Measurement
updates are executed based on the simplistic and un-
derstandably ad hoc method of a mixture weighting
given by [5]:

xatt(k) = αxatt(k − 1) + (1− α)zatt(k) (11)

where the weight α is empirically chosen. The at-
tribute states are initialized with the first measurement
of each type, and those attributes lacking any mea-
surements take on a null value to prevent an erroneous
target ID.



4.3 Target ID

Target ID is mapped to three discrete values:
Desired,Decoy, Unknown. The features of the de-
sired target, denoted here as "true", must be set a pri-
ori or determined by prolonged observation. Bayesian
inference is used to compute the probability of ID,
PID = p(xi|Vk), for each track as follows [6]:

p(ci|Vk) =
p (Vk|ci) p(ci)X
j

p (Vk|cj) p(cj)

=
p (vk|ci) p(ci|Vk−1)X
j

p (vk|cj) p(cj |Vk−1)
(12)

where the discrete transitional density, p (Vk|xi), is
based on attribute data using a simple binary voting
method that represents the set intersection of the var-
ious features. Note that Eq. (12) assumes indepen-
dence of the measurements in the sense that:

p (Vk|c) = p (vk, vk−1, ..., v1|c) =
kY
i=1

p(vi|c) (13)

The declaration of target ID is made using maximum
a posteriori (MAP) inference at a given sample time
via [6]:

ID = arg
n
max
i

p(ci|Vk)
o

(14)

This hard decision is acceptable for many applications.
It answers the question of "What class of target is it?"
Given the four types of attributes defined previously,
a target can receive 0 to 4 votes to determine if the
target matches the features of the desired target. The
transitional density, p (vk|xi), will take on discrete val-
ues based on the number of "yes" votes received. For
example:

V otes Decoy Unknown Desired
0
1
2
3
4

⎡⎢⎢⎢⎢⎣
0.38 0.33 0.29
0.35 0.34 0.31
0.34 0.35 0.31
0.33 0.34 0.33
0.28 0.33 0.39

⎤⎥⎥⎥⎥⎦ (15)

The probability of ID can then be computed at time k
using Eq. 12 starting from an initial condition without
bias such as: PID = [0.33 0.33 0.33] for ci = [Decoy
Unknown Desired].
The required voting is based on metrics specific to

each type of attribute. In the case of mass, a distance
metric is given by

∆massi = masstrue −massi (16)

for track i and the desired target’s "true" mass. If
|∆massi| < ε, where ε is an empirical threshold, then
track i receives a "yes" vote as a match.
Hue and saturation are represented by vectors of di-

mension nbins x 1, lending themselves to a correlation

metric. For each vector, the pairwise linear correla-
tion coefficient is computed between the "true" and
"track" hue and saturation vectors. A correlation co-
efficient arbitrarily close to one receives a "yes" vote as
a match. The same approach is applied to the texture
statistics, [S(r), S(θ)], requiring that the correlation
between both measurements and their "true" values
lie arbitrarily close to one in order to receive a "yes"
vote for the texture component.

4.4 Value Function fi,j

Obtaining the optimal solution relies upon using the
available information to properly set the values that
drive the integer program. The factors which influ-
ence the value function used in the integer program are
based on the kinematics states of the tracking routine,
the relative value of the segmentation methods, and
the target ID associated with a given track. These are
combined for each combination of target, sub-region,
and segmentation using the expression:

f
0

i,j,k = disti,j,k · κk ·mj,k · βj (17)

Each of the coefficients will be described presently.
The value disti,j,k represents the relative value of

the target appearing at a given location. In order to
generate a Gaussian-like weighting of the value, the
error distance, ρsi,j,k, is used as the argument of the
error function given by:

disti,j,k =
2√
π
e(ρ

s
i,j,k)

2

Z ∞
ρsi,j,k

e−t
2

dt (18)

Where

ρsi,j,k =

q
(pxk − sxi)

2
+ (pyk − syi)

2 (19)

with sxi and syi representing the center of sub-region
i.
Next, the target ID is used to provide a scale factor,

κk, is applied for target k in order to put emphasis on
a particular type of classification. Based on a set of
possible target ID’s, the value κk may be defined as:

κk =

⎧⎨⎩ 2, ID = 1
5, ID = 2
3, ID = 3

(20)

The values for κk are arbitrary and represent an ad
hoc tuning parameter within the value assignment con-
straint. A scaling mj,k is given by the ratio between
the number of times any segmentation j has been per-
formed on a given track k to the number of times any
other operation has been performed to this same track.
This weight can be illustrated as:

mj,k =

⎧⎪⎨⎪⎩
1, j = 1

N2,k

N3,k
, N2,k > N3,k, j = 2, 3

N3,k

N2,k
, N2,k < N3,k, j = 2, 3

(21)

where Nj,k is the number of times the jth segmentation
has been performed on the kth target.
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Figure 2: System with Binary Integer Program

For the three-segmentation case used here, a rela-
tive weight, β, is now applied to discern the benefit
of performing one type of processing over the other
in terms of the benefit obtained in classification that
results from this type of processing. For example,

βj =

⎧⎨⎩ 1, j = 1, mass
2, j = 2, color
3, j = 3, texture

The values βj are arbitrary and represent an addi-
tional tuning parameter within the value assignment
construct. Finally, since the goal is to determine a
value for each sub-region and each segmentation al-
gorithm, we will sum the values associated with each
target using the expression:

fi,j =
X
k

f
0

i,j,k (22)

to arrive at an objective function coefficient for each
decision variable in the BIP.

5 System Overview

The goal of this paper is to achieve optimal resource
allocation of the image processing resources available
to the computer. The optimal solution itself incurs a
computational cost, so an analysis of the performance
of a system computing an optimal solution should be
compared with another, simpler allocation method.
Several components are used to combine the image
processing, resource allocation, and target kinematic
and attribute tracking. The program implemented di-
vides the work into routines that perform each of the
necessary tasks and provides information to the next
task. This construct is illustrated in Figures 2 and
3. The purpose of the Logic Algorithm system is to
provide a means to compare the optimal resource al-
location system with a system that provides resource
allocation by making simple logic decisions. The per-
formance of the Integer Program system will be com-
pared to the Logic system to determine its effectiveness
in terms of its ability to provide proper target classifi-
cation and reduced resource consumption.
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Figure 3: System with Logic Algorithm

6 Simulation Study

A simulation study was conducted containing three
targets moving through a scene to illustrate the va-
lidity of the algorithms proposed in this paper. Two
scenarios were run. One consisted of 57 time epochs
(57 frames of imagery) and the other contained 48 time
epochs. The targets are soldiers with different uni-
forms, moving across a fixed scene containing occlu-
sions. Although all of the targets are very similar in
size, their color and texture attributes differ somewhat.
Two of the three targets are essentially distractors, and
it is desirable to track the single high-valued target.
The other targets (decoys) generate a computational
load on the image processing, requiring some method
for prioritizing the resource allocation. When targets
enter an occluded region they no longer generate mea-
surements or attribute data, but they may re-emerge
at a later time. While it is desired to be able to estab-
lish a target’s ID at a time before it enters an occlusion,
the ultimate purpose of this study is to be able to es-
tablish a positive identification on the "high-valued"
target when it emerges from an occlusion event. As
the targets move through the scene, they are classified
according to their attributes. There will be situations
that may cause improper classification. Targets may
move so close they merge onto each other, they may be-
come partially occluded behind an obstacle, and their
paths may cross. Simulations will be processed using
two types of allocation algorithms that select which
sub-regions to use for image processing. One model is
driven by the binary integer program and will be re-
ferred to as "BIP". The other will make simple logic-
based decisions driven solely by the targets’ kinematic
states. This will be referred to as "Logic," with the
principal idea was to generate a competing algorithm
for the BIP concept. The logic algorithm will order
change detection around each target, and a combina-
tion of color and texture processing is accomplished in
and around each change detection. The Logic concept
represents a greedy algorithm, which is not constrained
on a global level. In other words, it is allowed order
processing (in the vicinity of a change) without regard
for the total processing being conducted. In contrast,
when multiple targets are competing for resources, the



Table 1: Resources Consumed by Allocation Methods

Scenario 1
BIP Mass Color Texture

Averages: 1809.8 187.9 337.3
Tokens: 1809.8 751.6 921

Total Tokens: 3482.4
Logic

Averages: 1419.7 337.3 330.4
Tokens: 1419.7 1349.2 1652

Total Tokens: 4420.9
% Savings: -27.4 44.2 44.2

Net Savings: 21.2%

Scenario 2
BIP Mass Color Texture

Averages: 2178.3 229.6 228
Tokens: 2178.3 918.4 1140

Total Tokens: 3482.4
Logic

Averages: 1602.5 334.8 339.7
Tokens: 1602.5 1339.2 1698.5

Total Tokens: 4640.2
% Savings: -35.9 21.4 32.9

Net Savings: 8.7%

BIP divides limited resources among the various tar-
gets on a global scale.
A short Monte Carlo analysis of 10 runs was per-

formed to determine general characteristics of the two
resource allocation methods. When using basic filter-
ing on the images, it was determined that it takes
about 5 times longer for a texture measurement and
about 4 times longer for a color measurement than a
mass measurement. A token is defined as the amount
of time to perform a mass measurement. Therefore,
for each segmentation, j, these relative token costs are
called τ j . For each segmentation that is performed
vj times per epoch, the total number of tokens, Ψ,
required to perform an epoch’s image processing is de-
fined as:

Ψ =
3X

j=1

τ jvj (23)

This will be used to determine the relative cost for the
simulations. Table 1 shows the amount of resources
consumed using each of the allocation methods for the
two scenarios. From this table, it can be seen that
the BIP algoritm uses fewer resources than the Logic
algorithm. It must be recognized that the computa-
tional load of implementing the BIP algorithm is not
included here.
The classification accuracy was computed for each

scenario by counting how many times the correct or in-
correct classification was applied to each visible target
at each epoch. These totals are provided in Table 2.
In scenario 1, there are 30 opportunities for a correct
desired identification in each run, and 48 opportunities
for a correct decoy identification. Scenario 2 contains
27 opportunities for a correct desired identification and

Table 2: Classification Quantities

Scenario 1
True False
Pos. Neg. Pos. Neg.

BIP 73 426 54 227
Logic 43 435 45 257

Scenario 2
BIP 100 391 59 170
Logic 63 424 26 207

CD|TD CN |TN CD|TN CN |TD

Table 3: Overall Classification Accuracy

Scenario 1
BIP Logic Best

P (TD|CD) 0.575 0.500 BIP
P (TN |CD) 0.425 0.500 BIP
P (TD|CN ) 0.348 0.37 BIP
P (TN |CN ) 0.652 0.63 BIP

Scenario 2
P (TD|CD) 0.629 0.708 Logic
P (TN |CD) 0.371 0.292 Logic
P (TD|CN ) 0.303 0.328 BIP
P (TN |CN ) 0.697 0.672 BIP

45 opportunities for a correct decoy identification.

Given the information presented in Table 2, it is
possible to determine the probability of a target be-
ing of one of the two types, desired or decoy, given a
classification. There are four permutations that can
be measured. These are the probabilities of having de-
sired or decoy targets, given that there is a positive or
negative classification. Conditional probabilities can be
calculated via:

P (Tx|Cy) =
P (Cy|Tx)P (Tx)

P (Cy)
(24)

where Tx indicates a target truly being desired or decoy
and Cy indicates a desired or decoy classification.

The values in Table 3 indicate the probabilities given
by Eq. (24). The variable TD indicates a (D)esired tar-
get, while TN indicates the (N)on-desired or decoy tar-
get. The CD indicates a (D)esired classification, while
CN indicates the (N)on-desired or decoy classification.
The algorithm that provides the better performance for
each case is indicated in the right column of each of the
scenarios’ information. The probabilities, P (TN ) and
P (TD) are determined by the total number of times
each of the target types appears in the scene, divided
by the total appearances of all targets. The proba-
bilities P (CD) and P (CN ) are the relative chance of
each of the two classifications occurring, and are com-
puted as finding the number of times each classification
is made divided by the total number of classifications
made.



7 Conclusions
Both resource allocation methods studied here provide
acceptable and relatively similar results in terms of cor-
rectly classifying targets. The BIP method provides
improved performance in terms of computational load
over the simple Logic method. This benefit does come
at a cost. A valuation function must accurately de-
scribe the value of collecting information on a given
target, and a BIP that is too complex may not be able
to determine resource allocation quickly. It is appar-
ent that the study of BIP’s choices can be used to drive
the development of other logic-based algorithms that
will function quickly as well as provide comparable re-
sults. Certainly, such an ad-hoc logic set can be em-
ployed, with adequate performance as demonstrated
here. This leads to the concept of using the BIP to
help in the development of logic-based algorithms for
online use, which is the basis for future work in this
area. A different method of approaching the problem
may provide a more robust and reliable system. Such a
resource allocation system would be two-layered. The
first layer of the system would determine how many
system resources at a given time can be allocated to
various areas of the problem. This would be based on
standard linear programming techniques and provide
information such as what image processing algorithms
to utilize and which targets should be examined. The
second layer would use simple logic to determine where
to apply the resources that are allowed at each epoch.
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